在模式识别领域中,我们遇到的一个很关键的问题就是不确定性。概率论为我们解决这种不确定性提供了一个系统的框架。在得到了相关变量的概率信息后,我们需要用决策论的相关知识做出最优的判断。也就是说,我们将模式识别的过程分为了两个阶段,第一个阶段就是推理(inference),得到相关的概率;第二阶段使用决策论知识做出最优的判断。下面就是概率论和决策论要用到的知识。
继续阅读
machine learning Machine learning probability Comments(2) 2012年11月17日 18:50